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1. Introduction

The problem of axisymmetric indentation of an elastic Isgl&ce by a rigid flat-ended cylindrical
punch (the Boussinesq problem) is summarized in this repexact analytical solutions to
elastic indentation problems are important for verificatidd numerical codes capable of
modeling such phenomena, 3), and for modeling the onset of permanent deformation and
fracture ), a topic of active research in the Materials and Manufaatuciences Division of
the U.S. Army Research Laboratory.

Boussinesq®) and Love {) were among the first to consider such a problem, but Sneddid) (
solved the mixed boundary value problem for the rigid fladesshpunch in cylindrical polar
coordinates by using the Hankel transform to convert theegorg equation, i.e., the biharmonic
equationV4y = 0, into a set of dual integral equations solvable by methotisdiniced by
Titchmarsh 9). The generality of Titchmarsh’s method8) (vere such that they were also used
by Busbridge 10), and Tranter 11) to derive solutions to the electrified disk problem impotta
in potential field theoryy2¢ = 0. Other powerful methods of analysis rely on using the
Papkovich-Neuber solution (Galerkin vector), which fodigdorce free axisymmetric problems
involves determining two scalar harmonic functions soledly Hankel transforms1@). Hankel
transforms and dual integral equations have been usedsexeégnby a number of researchers to
solve axisymmetric boundary value problems in fluid)( poroelastic 14), piezoelectric 15),

and magnetoelectroelastitq) media.

We focus our study on the fully three-dimensional, axisyrrmoéndentation problem despite the
long history of developments in the two-dimensional theafrgnixed boundary value problems,
known as Riemann-Hilbert problems, and their solution k@aPlemelj 17) formulae?
two-dimensional half-plane solutions for rigid flat punddéntation problems are decidedly
non-physicaf. since vertical surface displacements become unboundegfaosva the punch.

This result has been obtained by both Engla2ilj page 70, equation (3.67)) using complex
variable methods, and Snedddn jpage 433, equation (115)) using Fourier transform methods

During the course of our literature survey on axisymmetraeintation, we encountered many
typographical errors or misprints of equations that hawanhewittingly propagated through the

Iparton and Perlin1@) refer to these equations as the Sokhotskii-Plemelj foamuand Gakhov1) refers to
these equations as the Sokhotskii formulae, since Sokihdeskved them first in his 1873 dissertation.

2Solutions to boundary value problems that are non-physiegi be more useful for code verification than exact
physical solutions with field singularities; see, e.g.,nethod of manufactured solutions in Oberkampf and R2g). (



literature by various authors; we have identified thesegirothis report for readers interested in
such analysis. Furthermore, the original works of Snedtlp#,(8 lacked analytical expressions
for the vertical displacements within the half-space raegindeed, only expressions for the
vertical displacements of the surface of the half-spacgiaen? and we wondered why the more
general half-space solution was omitted by Sneddon. Theakdisplacement solution in the
entire half-space is important for verification of numerimades. We traced the probable cause
of the omission to the unevaluatgf] term appearing in the expression for the vertical
displacement,..* In general, the/™ terms can be defined.) by taking the imaginarg part of

a Laplace transform involving:-order Bessel functions,, (pp)

=S [T dp (1)
0

Explicit solutions to equation 1 can be obtained by takirgithaginary part of a more general
result found in Sneddon’s textbook; (page 514, appendix A),

2
J =S (2_mpm(( — i)™ "D (m 4 n) o F (mTM, %(m +n+1);m-+1; —(Ciil)?)) , (2)
where(p, () > 0,R(m + n) > 0, and ,F} is the regularized hypergeometric function
oFy = 3Fi(a,b;¢; 2)/T(c). According to Watson22; page 384), both HankeR8) and
Gegenbauer2d) “proved thatR(m + n) > 0, to secure convergence at the origin.” More direct
is the observation that for th& term, ifm = n = 0, then['(m + n) = (m +n — 1)! is undefined
in equation 2. We also found in the Tables of Integral Tramsfofrom the Bateman Manuscript
Project @5; page 182, equation (5)) that a solution to the singulagiatigequation 1) does not
exist form =n =0,

% opl(C—) (=i (14 1+ ¢Z5)
J(;”:s/ ¢ p‘]m(p”)dp:s — Sl m>0 . (3)
0

However, from the same work2$), one can find an explicit representation for theterm given

3See e.g., Sneddon’s textbodk page 461, the equation is not numbered).
4See e.g., Sneddon’s textbodk page 459, equation (44)), and reproduced for convenienegquation 5 of this
report.



on page 101, equation (17) in terms of a Fourier sine tramsfor

Jg _ /Ooo e P¢ sin(p)Jo(pp) dp = sin-! < 2 ) . (@)

P VEHp =12+ + (p+1)?

Thus, a formal relationship should be derivable betweersthetion for.J§ given in equation 4
and equation 3 evaluatedat= 0; we derive such a relationship in this report through
application of L'Hopital’s rule to equation 3. In fact, werde new expressions for all th&"
terms that appear as stress and displacement componemisddd@’s solution to the
axisymmetric indentation probleni)( The new analytical solutions are used to verify our
peridynamics numerical cod@,(3), and illustrate principal stress trajectories in an éast
half-space under the action of a rigid cylindrical punch.e&ifon’s classic textbookL was
published only three years before the publication of theBwin treatise2b) so the reason why
Sneddon was not aware of, or did not publish the result giyeegoiation 4, remains an open
guestion and was in fact another motivation for this redearc

2. The Mechanics of Indentation

The solutions for the displacements and stresses in atcdtasitspace under the action of a rigid
flat-ended cylindrical punch that appear in Sneddon’s tedth(1) are listed below:

e (J& — —()‘:“)CJ})
(A +2w) ’
2 (R0 + 19)

Uy =

A2
Uy )
s

Ape (¢J5 + J7) (A + 1)
=T wa(\ + 2u) ’
ACType(X + p)
— ma(A+2p)
e e (T = 220
T ma(A+2p) wap(A + 2pu)
Ape (PN + ) = CIF(A + )
ma(X +2p)

TZ: y

Y

O, + 09 =

(5)



In these equations, the dimensionless radial coordimate-/a is the physical radial distanee
normalized by the indenter (punch) radiysand the dimensionless depth coordinate z/a is
the physical depth normalized by the punch radius ¢ is the indentation depth, and the Lamé
parameters are given byandy. The radial stress,. is not given in Sneddon’s textbool)(but
can be derived readily by subtractionffrom o, + o4 from equations 5 resulting in,

_ Ape(Jop — A+ p)(p(J) — ¢ J3) + ¢J1)

r ) 6
map(\ + 2p) ©)

where theJ"™ terms are defined as singular integrals involving Bessedtfons J,,, (pp),

Ty = / p" e P sin(p) J(pp) dp (7)

0

or as Laplace transforms involving Bessel functions, ite imaginary part of the singular
integral,

=3 [Tt o dp ®)

0

Explicit analytical expressions for a number of specidimas of the integral in equation 8 can be
found in the Tables of Integral Transforms from the Batemamdcript Projectd5; page 182;
equation (5)) for example, th > 0 andn = 0,

Jy' = 3/ p e I (pp)dp =S 9)
0 m
Thus, form = 1, equation 9 becomes
=9 P 10
=3 (enatane) 4o



where,H (p,() = /1 + &. However, form = 0, care must be taken for evaluation of the
integral in equation 9 via a limit process, i.e.,

J§ = lim J" = limmz lim &
m—0 m—0 g(m) m—0

((g — )™ (1 4+ H(p, C))_m) . (11)

m

In evaluation of the limit in equation 11, singém) = (1) = g(m) = 0 ask(m) — 0, and
since the limit of the ratigf’(m)/¢'(m) asR(m) — 0 exists, we may employ L'Hbpital’s rule for
the evaluation off{,

JO = Tim £ (m) _ £ (12)

m=0 g(m)  m=0g'(m)

The derivative of the numerator and denominator of equdtioresults in

—S((¢—1)"™p™ (log (1 + H(p,()) +log(¢ — i) —log(p)) (L + H(p,¢))™™)

Thus,
Jo = =S (log (1 + H(p,¢)) + log(¢ — i) —log(p)) (14)
or

Alternatively, sincer = |z| ¢'®8(*), then lodz) = In|z| + i arg(z), and(log(z)) = arg(z)®
resulting in

SMultivaluedarg(z) is defined byarg(2) = {Arg (2) + 27k : k€ Z}, —-w<Arg(z)<m



A more direct means for deriving equation 185), can be seen by recognizing that since

2= 2] = |z €, (17)

then equation 11 can be written succinctly as

lim S (%) T s L lim 0]2|"sing(m0) = 0 = arg(z) . (18)

m—0 m@

Interestingly, we later became aware of an expressiodfan Barquins and Maugi2{; page
355; appendix 2), who obtained it from an earlier work of D#h¢8), although the steps taken
for its derivation do not appear in either work. The expr@sshat appears in Barquins and
Maugis @7) using Sneddon’s1j notation is

(19)

- \/\/(C2+p2—1)2+4<2+c2+p2—1
J§ == —tan™!
2 V2

Dahan 28) refers to the earlier work of Gerrard and HarriéqB80), where in fact, an expression
for J can be extracted by specializing their general resultsrf@rasotropic elastic half-space to
an isotropic elastic half-space under vertical displacdrbg a rigid, flat-ended cylindrical punch
(see e.g., pages 12, 14, and 15 of Gerrard and Harr3@). (The expression fa#{ that we have
extracted from Gerrard and Harriso80f using Sneddon’s1) notation is

6Dahan 28) refers to his thesis2Q) as a possible source for derivation, which is inaccessibies.
"Gerrard and Harrison 3Q) refer to an earlier reference from Koning31l] where we find all of
Sneddon's 1) expressions (27) listed without reference; in addition, carrect expression forJ) =

sin~! <\/§2 +p2+1- \/(C2 +p2+1)7% - 4p2/(\/§p)> appears without derivation.



U —gin™! 2 20
b <m+ <2+<p+1>2> | =

Equation 20 is identical to that found in the Bateman Maripsé&roject @5), i.e., equation 4
herein, and subsequently found in Fabrikeé8®; page 221, equation (54)). FabrikaX3) also
applied the theory of the potential to solve a number of mixedndary value problems in
mechanics, including the bonded/unbonded cylindricatpbysroblem in both isotropic and
transversely isotropic elastic medid2f. Using the identity

sin™* (ﬁ) =3 — tan~!(z), > > 0 one can verify that equation 19 is identical to equation 20.
Our own result forJg, given by equation 15 or equation 16, can be shown to be dguiva that

of Gerrard and Harrison3() in equation 20 using an identity from Churchill’s te84 page 62,

section 29), that relates the inverse sine function to arithgaic function,

sin~(z) = —ilog (\/m + iz) = —ilog S <1 +,0' L &) (22)

and if we solve equation 21 far, we find that: = —i/jf. Thus, our result in equation 16 follows

readily by simplification ofin—* (—iplc) A plot of the J§ term is illustrated in figure 1.

Barquins and Maugis2(7) have identified several typographical errors in the lite@by noting
“...that JY andoy are misprinted in...” Sneddon’s papef),(i.e., equations (3) and (16) in that
work®; we also discovered another error in the termifpappearing in equation (8) of Sneddon’s
papef (4); this error was also incorrectly transcribed to appendiegquation (34) of Barquins
and Maugis 27). These typographical errors are corrected in Sneddoxtlsdek (1).

Proceeding in a similar fashion by using the results fr@&) page 182, equation (7)) for
m = 1,n = 2, equation 8 becomes

8J¢ should beJ? in the first term, and/d should beJ? in the last term of equation (3) in Sneddon’s pap# the
transcendental argumetit (M) should appear asn (37“" — ) in equation (16) of Sneddon’s papet).(
9The (J¢ — MCJ%) term should appear 9} — WCJ%) in equation (8) of Sneddon’s papef)(



Figure 1. Plot of the/{ term given by equation 16, 19, or 20.
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Thus, using the result from the Bateman Manuscript Prostdage 182, equation (1)) for
m = 1,n = 1, equation 8 becomes

Ezg/imﬂwmwmw:w
0

ﬁzg/%fmﬂﬁwmhzﬁ 5 ) (23)
0

and using the result from the Bateman Manuscript Profstdage 182, equation (1)) for
m = 0,n = 1, equation 8 becomes

ﬁ:%AWJMﬂ%@m@=$<@t§a;5) . (24)

Finally, using the result from the Bateman Manuscript Ribf25; page 182, equation (2)) for
m = 0,n = 2, equation 8 becomes



J) = %/ pe P Jo(pp) dp = %( : ) ) (25)
=8, o(er) C—iPH(p.OP
Our results for the/™ terms necessary for determining the stress and displaddieiels
(equations 5 and 6) in an elastic half-space under the agfiamigid flat-ended cylindrical punch
are written succinctly as

Y

1 _ g P
2= ((c “RH(p O

)

)
Ji =S ((C “)2H (p, gp)(H(p, ¢)+ 1)) ’

)

)

1 p
-9 (g —)A+A(p.0))
PR SLICD G 06

The results summarized in equation 26 are derived usingahked of Integral Transforms from
the Bateman Manuscript Proje@5). If we use instead, Table VII. Hankel Transforms on page
528 of Sneddon’s textbooKL), we can verify the results summarized in equation 26. Ugieg
Hankel transform tables found in Sneddon’s textbobk fowever, we find that the two ternig
and.J! differ in form, but are equivalent to those appearing in ¢igue26. These are given by

Ji = 9 (MDY — 15((¢ — i)(H(p,¢) — 1)) andJ} = 3 (2e91) = 13 ().

Our J™ expressions in terms of dimensionless coordinatasd( differ in form, but are
equivalent to those given in Sneddon’s textbddK1) and Barquins and Maugi€7), viz.,

10we have verified this numerically, to machine precision, bynparing allJ™ terms in equation 26 and equa-
tion 27.

HAll equations 27 appear originally in Sneddon’s textboak éxcept for theJ) term, which appears explicitly in
Barquins and Maugis2(7). The.J] term is misprinted in Sneddon’s textbodk page 462, equation (56)), as it omits

T . 3¢
the p that multiplies thesin (7) term.



o= sin (£) |
VR
7 sin (3—“0 — 9)
Jy = R32/2 ’
o 7 sin (9 — %)
1 — p\/ﬁ )
psin (3—“0)
Jy = 33/22 ’
7 1 — V/Rsin (%)
0 P )
2 2 —
ngg—tan_l<\/c “\’/;R 1) , (27)

whereR = \/(p2 +(¢2—1)% +4¢? as beforey? = 1+ ¢2, Ctan(0) = 1, and
(p* +¢* — 1) tan(¢) = 2¢.

Sneddon’s solutions (equation 5) can be rewritten moreiscitg using the substitution,

A= 12_“;’”, and by normalizing the stress components by the mean pegssu= igzﬁ;l’g and the

displacement components by the indentation deptésulting in

w(p.O) (I = (1= 20)7)
€ (1 —v) ’
wsp,C) _ (1= )R+ CID)
€ (1 —v) ’
Tr2(p, C) _C_J21

Pm 2
1

o.(p, ()

o (p7 C)
Pm

=5 = (e =T~ (1-2) 5] (28)

1
= 5ot = C (=) R)

o (p,¢)
P

Thus, the dimensionless analytical solutions for displaeets and stresses in an elastic
half-space (equation 28) are functions of Poisson’s ratend substantiates the choicevadlone

10



to describe the elastic properties of the half-space initlnedsional analysis for Hertzian cone
cracks developed in Gazonas et &l); (hese equations are corroborated by those found in
Barquins and Maugis2(/), with the exception of the expression f@r, misprinted in both
Barquins and Maugis2(/) and Sneddon4).

3. Peridynamics Code Verification

In the previous section, we have shown how to derive a newaxgkpression for/{ necessary
for determining the vertical displacements in an elastl&$ace (equation 28); the solution for
the vertical displacements,

wa(p) _2arg ((C—z’) <1+ \/1+H(p70>> +59 (W) | 29)

€ s

of the half-space is illustrated in figure 2 (solid lines),esawe verify a numerical peridynamic
solution (dashed lines) at dimensionless depihs,0,( = 1.7, and{ = 5.4. A 100 x 100 node
grid spacing was used for all axisymmetric peridynamic $ations. The perfectly matched
layer (PML) developed by Wildman and Gazon&3 f0r 2-D peridynamics, is employed in this
axisymmetric solution at finite radial and vertical distasg = ¢ ~ 8 within the computational
domain to simulate the zero vertical displacement condifiat exists at infinity. The solution
for the radial displacements,

o (0,) (1—20)3 ((c — ) (—1 + \/m)) +¢S <m)

e m(v—1)p ’ (30)

of the half-space is illustrated in figure 3 (solid lines),esawe verify our numerical peridynamic
solution (dashed lines) at dimensionless depfhs,0,( = 1.7, and¢ = 5.4. The analytical

radial surface displacements of the half-space are géyeai-monotonic and the computed
peridynamic results accurately reproduce the theordtieatls as a function of depth within the
half-space; we note, however, that the computed radialatisments undergo a small spatial
wrinkle atp = 1 at the corner of the rigid punch, and we surmise that thiséted to

singularities present in the stress and strain fields thgtinfeuence the non-singular

11



displacement fields. Since we do not observe such behaviorat in the computed vertical
displacement field illustrated in figure 2, it is also possitblat this is a result of a solution that
has not fully converged.

Using the theory of the potential, FabrikaB2( page 221, equations (53) and (54)) has
independently derived analytical solutions for both thadex and unbonded punch problem;
Fabrikant's solutions are to within machine precision, eugally equivalent to the new solutions
u, in equation 29 and, in equation 30. The mean pressure = % I_EVQ induced in the elastic
half-space with rigid punch radius= 5 mm, indentation depth= 0.5 mm, Young’s modulus,

E =65 GPa, and Poisson’s ratio= 0.20 is 4.3 GPa.

8 10

Figure 2. Verification of our peridynamics code results (@aklines) using the
analytical solution (solid lines; equation 29) for norrzelil vertical
displacements= in an isotropic elastic half-space,= 0.2, due to a
rigid flat-ended cylindrical punch; the mean pressure iedua the
half-space ip,, = 4.3 GPa.

12



Figure 3. Verification of our peridynamics code results f@aklines) using the
analytical solution (solid lines; equation 30) for norrzelil radial
displacements* in an isotropic elastic half-space,= 0.2, due to a
rigid flat-ended cylindrical punch.

13



4. Stress Trajectories

Stress trajectories or isostatics (principal stress toes in the plané = constant) for the
problem of the half-space indented by a rigid flat-endechdylcal punch first appear in
Sneddon 4) and can be determined by solving

2 TZ
tan(2a) = 7

(31)
Oy, — 0,

for « inclined at anglest anda + 7/2 to the radial axisy. Use of the auxiliary relationship in
dimensionless coordinatesn(a) = d¢/dp, we arrive at a differential equation for solution of
the isostatics for maximum and minimum principal streseations in a half-space under the
action of a rigid flat-ended cylindrical punch:

%__O‘T—O'zj: 14+ Op — 0, ? (32)
dp N 27}2 27—7”2 ‘

Substitution of stress componemnts ., andr,. from equation 28 into equation 32 results in

dg _ 2pJg+ (L —2w) I~ Gt | \/1 L (20078 + (1= 25 — ¢} @3

dp 2(pJ3 AC2p%(J5)?

To determine the isostatics for the rigid punch indentagimoblem, equation 33 (for the;
trajectory) and its negative reciprocal (for thetrajectory) must be numerically integrated with a
computational software program like Mathematica &86)( The maximum shearing stress
trajectories bisect the angle made between the orthogonaigal stress trajectories, thus, one
set of maximum shearing stress trajectories can be detedifiom the equation

d q¢-1
— = 34
dp q+1 (34)

and an orthogonal set of maximum shearing stress trajestoan be determined from

14



& = g+l (35)

dp 1—¢q
whereq is given by the right-hand side of equation 33. The isostatitd maximum shear stress
trajectories have been determined numerically using Madtiea 8.0 85) and these curves are
illustrated in figure 4. In general, our numerically compli@jectories compare quite well with
Sneddon’s 4) hand-drawn curves, generated “by tracing two sets of aww@ch are at every
point tangential to the direction of the two principal stesin the plane.” Our; trajectories
(solid black lines in figure 4), however, tend to parallel fiee surface in regions outside the
contact area, a result shown also in Barquins and Mag@igpage 342, figure 4), whereas
Sneddon’s curvesl( page 38, figure 6) are in error, and orthogonal to the frelaselin such
regions. Because our maximum shear stress trajectorissdddines) should intersect the free
surface, i.e. along the-axis at 48, as they do along thg-axis, they are in error here, as we were
unable to numerically integrate equation 35 along#tmmain in regions where the trajectories
become vertical and have undefined slogée,: oo; we attempted to re-couch equation 35 in
terms of polar coordinates to eliminate the numerical dengfy, but were still unable to obtain a
solution in this region.

15



—4

Figure 4. Axisymmetric isostatics in an elastic mediuwns 0.1679, indented by
a flat-ended cylindrical puncla;; stress trajectories (solid black lines),
o3 stress trajectories (dashed black lines), and principsdisstress
trajectories (orthogonal dot-dashed blue lines).
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5. Conclusions

In this report, we have derived new expressions (equatipfio2@he J* terms that appear as
stress and displacement components in Sneddon’s solotitie taxisymmetric indentation
problem (). The new solutions are used to verify a newly developedigaamics numerical
code @, 3. The analytical solutions for the normal and radial disptaents of an elastic
half-space under the action of a rigid cylindrical punch pane well with the elastic
deformations from peridynamic simulations. Principaéstrand shear trajectories in the elastic
half-space under the action of a rigid cylindrical puncheveerived by numerical integration of
equation 33; our results generally compare well with Snatdwand-drawn curves, but
Sneddon’sr; trajectories 4) are in error near the surface of the half-space and outisalgegion

of indentation.

Sneddon’s classic textbool)(was published only three years before the publicationef th
Bateman Manuscript Project treatis2b), so the reason why Sneddon was not aware of, or did
not publish, any result for thé] term, given by equation 4 (page 101, equation (17) of that
treatise), remains an open question; the omission ofiflterm, and hence expressions for the
vertical displacements within the half-space, is also egein more recent contact mechanics
textbooks 12, 3. Finally, we derived a new expression for tigterm with a relatively
straightforward application of L'HGspital’s rule and hasteown that it is analytically equivalent
to the results of Barquins and Maugi®7} (equation 19), Gerrard and Harrison (equation 20), and
that found in Bateman'’s treatise (equation 4). The new aicalyresults for the remaining’”
terms (equation 26) compare exactly to within machine gieni? with those from Sneddon’s
textbook () (equation 27) for a number of half-space depftad radial distances

12This result is shown analytically for th&) term in the text and analytically for thg term in the appendix.
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Appendix. Equivalence of Sneddon’s/j Term With Our New Derivation

In this appendix, we derive an analytical equivalence bemw@neddon’s; term found on page
462, equation (56) of his textbool)(with our own derivation, viz.,

Ty

-y Nemgatmpa) =2 () e

Expanding the first term in equation A-1 using definitidhs= \/(p2 +¢2—1)*44¢2, and
(p* + ¢ — 1) tan(¢) = 2 yields

J& _ % (1 _ </(C2 + p? — 1)2 + 4(?sin <% tan™* (p2 + (2 - 1,2())) , (A-2)

and the third term in equation A-1 usiig(p, () = /1 + & yields

J&:%s (i-c+vVP+C—) . (A-3)

Expanding the term under the square root sign in equatioreAe3taking the imaginary part
results in

Jl = % (1 + C/(Cz + p? — 1)2 + 4% sin (% arg (p2 + (¢ — 1)2))) ) (A-4)

Expanding the arg function term in equation A-4 results in

Jb= 1 (1 + f/(g? + p? —1)> +4(%sin <% tan~" (¢* + p* — 1, —zg))) , (A-5)
P
the required equation A-1 after factoring the minus signasuhe arctangent function.
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